Structured Quadratic Inverse Eigenvalue Problem, I. Serially Linked Systems
نویسندگان
چکیده
Quadratic pencils arising from applications are often inherently structured. Factors contributing to the structure include the connectivity of elements within the underlying physical system and the mandatory nonnegativity of physical parameters. For physical feasibility, structural constraints must be respected. Consequently, they impose additional challenges on the inverse eigenvalue problems which intend to construct a structured quadratic pencil from prescribed eigeninformation. Knowledge of whether a structured quadratic inverse eigenvalue problem is solvable is interesting in both theory and applications. However, the issue of solvability is problem dependent and has to be addressed structure by structure. This paper considers one particular structure where the elements of the physical system, if modeled as a mass-spring system, are serially linked. The discussion recasts both undamped or damped problems in a framework of inequality systems that can be adapted for numerical computation. Some open questions are described. AMS subject classifications. 65F18, 15A22, 93B55
منابع مشابه
STRUCTURED QUADRATIC INVERSE EIGENVALUE PROBLEM , I . SERIALLY LINKED SYSTEMS DRAFT AS OF October 16 , 2006
Quadratic pencils arising from applications are often inherently structured. Factors contributing to the structure include the connectivity of elements within the underlying physical system and the mandatory nonnegativity of physical parameters. For physical feasibility, structural constraints must be respected. Consequently, they impose additional challenges on the inverse eigenvalue problems ...
متن کاملStructured Quadratic Inverse Eigenvalue Problem, Ii. Generally Linked Systems
Quadratic pencils arise in many areas of important applications. The underlying physical systems often impose inherent structures, which include the predetermined inner-connectivity among elements within the physical system and the mandatory nonnegativity of physical parameters, on the pencils. In the inverse problem of reconstructing a quadratic pencil from prescribed eigeninformation, respect...
متن کاملRobust Eigenstructure Assignment in Second-Order Control Systems
Feedback design for a second order control system leads to an eigenstructure assignment problem for a quadratic matrix polynomial. It is desirable that the feedback controller not only assigns specified eigenvalues to the second order closed loop system, but also that the system is robust, or insensitive to perturbations. We show that robustness of the quadratic inverse eigenvalue problem can b...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملAn Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
The inverse eigenvalue problem of constructing symmetric positive semidefinite matrixD written as D ≥ 0 and real-valued skew-symmetric matrix G i.e., G −G of order n for the quadratic pencilQ λ : λMa λ D G Ka, whereMa > 0,Ka ≥ 0 are given analytical mass and stiffness matrices, so that Q λ has a prescribed subset of eigenvalues and eigenvectors, is considered. Necessary and sufficient condition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 29 شماره
صفحات -
تاریخ انتشار 2007